myGully.com Boerse.SH - BOERSE.AM - BOERSE.IO - BOERSE.IM Boerse.BZ .TO Nachfolger
Zurück   myGully.com > Talk > Wissenschaft
Seite neu laden

Hybrid Solar System Makes Rooftop Hydrogen

Willkommen

myGully

Links

Forum

 
Antwort
Themen-Optionen Ansicht
Ungelesen 10.08.11, 10:42   #1
phil8143
Hawara
 
Benutzerbild von phil8143
 
Registriert seit: Sep 2009
Ort: Austria
Beiträge: 300
Bedankt: 257
phil8143 gewöhnt sich langsam dran | 82 Respekt Punkte
Standard Hybrid Solar System Makes Rooftop Hydrogen

Zitat:
While roofs across the world sport photovoltaic solar panels to convert sunlight into electricity, a Duke University engineer believes a novel hybrid system can wring even more useful energy out of the sun's rays.


This is the hybrid system schematic. (Credit: Nico Hotz)

Instead of systems based on standard solar panels, Duke engineer Nico Hotz proposes a hybrid option in which sunlight heats a combination of water and methanol in a maze of glass tubes on a rooftop. After two catalytic reactions, the system produces hydrogen much more efficiently than current technology without significant impurities. The resulting hydrogen can be stored and used on demand in fuel cells.

For his analysis, Hotz compared the hybrid system to three different technologies in terms of their exergetic performance. Exergy is a way of describing how much of a given quantity of energy can theoretically be converted to useful work.

"The hybrid system achieved exergetic efficiencies of 28.5 percent in the summer and 18.5 percent in the winter, compared to 5 to 15 percent for the conventional systems in the summer, and 2.5 to 5 percent in the winter," said Hotz, assistant professor of mechanical engineering and materials science at Duke's Pratt School of Engineering.

The paper describing the results of Hotz's analysis was named the top paper during the ASME Energy Sustainability Fuel Cell 2011 conference in Washington, D.C. Hotz recently joined the Duke faculty after completing post-graduate work at the University of California-Berkeley, where he analyzed a model of the new system. He is currently constructing one of the systems at Duke to test whether or not the theoretical efficiencies are born out experimentally.

Hotz's comparisons took place during the months of July and February in order to measure each system's performance during summer and winter months.

Like other solar-based systems, the hybrid system begins with the collection of sunlight. Then things get different. While the hybrid device might look like a traditional solar collector from the distance, it is actually a series of copper tubes coated with a thin layer of aluminum and aluminum oxide and partly filled with catalytic nanoparticles. A combination of water and methanol flows through the tubes, which are sealed in a vacuum.

"This set-up allows up to 95 percent of the sunlight to be absorbed with very little being lost as heat to the surroundings," Hotz said. "This is crucial because it permits us to achieve temperatures of well over 200 degrees Celsius within the tubes. By comparison, a standard solar collector can only heat water between 60 and 70 degrees Celsius."

Once the evaporated liquid achieves these higher temperatures, tiny amounts of a catalyst are added, which produces hydrogen. This combination of high temperature and added catalysts produces hydrogen very efficiently, Hotz said. The resulting hydrogen can then be immediately directed to a fuel cell to provide electricity to a building during the day, or compressed and stored in a tank to provide power later.

The three systems examined in the analysis were the standard photovoltaic cell which converts sunlight directly into electricity to then split water electrolytically into hydrogen and oxygen; a photocatalytic system producing hydrogen similar to Hotz's system, but simpler and not mature yet; and a system in which photovoltaic cells turn sunlight into electricity which is then stored in different types of batteries (with lithium ion being the most efficient).

"We performed a cost analysis and found that the hybrid solar-methanol is the least expensive solution, considering the total installation costs of $7,900 if designed to fulfill the requirements in summer, although this is still much more expensive than a conventional fossil fuel-fed generator," Hotz said.

Costs and efficiencies of systems can vary widely depending on location -- since the roof-mounted collectors that could provide all the building's needs in summer might not be enough for winter. A rooftop system large enough to supply all of a winter's electrical needs would produce more energy than needed in summer, so the owner could decide to shut down portions of the rooftop structure or, if possible, sell excess energy back to the grid.

"The installation costs per year including the fuel costs, and the price per amount of electricity produced, however showed that the (hybrid) solar scenarios can compete with the fossil fuel-based system to some degree," Hotz said. 'In summer, the first and third scenarios, as well as the hybrid system, are cheaper than a propane- or diesel-combusting generator."

This could be an important consideration, especially if a structure is to be located in a remote area where traditional forms of energy would be too difficult or expensive to obtain.

Hotz's research was supported by the Swiss National Science Fund. Joining him in the study were UC-Berkeley's Heng Pan and Costas Grigoropoulos, as well as Seung H. Ko of the Korea Advanced Institute of Science and Technology, Daejon.
Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by Duke University, via EurekAlert!, a service of AAAS.
[ Link nur für registrierte Mitglieder sichtbar. Bitte einloggen oder neu registrieren ]
phil8143 ist offline   Mit Zitat antworten
Ungelesen 10.08.11, 14:45   #2
HappyMike34
Erfahrenes Mitglied
 
Registriert seit: Mar 2010
Beiträge: 671
Bedankt: 653
HappyMike34 leckt gerne myGully Deckel in der Kanalisation! | 134125 Respekt PunkteHappyMike34 leckt gerne myGully Deckel in der Kanalisation! | 134125 Respekt PunkteHappyMike34 leckt gerne myGully Deckel in der Kanalisation! | 134125 Respekt PunkteHappyMike34 leckt gerne myGully Deckel in der Kanalisation! | 134125 Respekt PunkteHappyMike34 leckt gerne myGully Deckel in der Kanalisation! | 134125 Respekt PunkteHappyMike34 leckt gerne myGully Deckel in der Kanalisation! | 134125 Respekt PunkteHappyMike34 leckt gerne myGully Deckel in der Kanalisation! | 134125 Respekt PunkteHappyMike34 leckt gerne myGully Deckel in der Kanalisation! | 134125 Respekt PunkteHappyMike34 leckt gerne myGully Deckel in der Kanalisation! | 134125 Respekt PunkteHappyMike34 leckt gerne myGully Deckel in der Kanalisation! | 134125 Respekt PunkteHappyMike34 leckt gerne myGully Deckel in der Kanalisation! | 134125 Respekt Punkte
Standard

Danke! Endlich mal ein interessanter Beitrag zum Thema Energie ohne den üblichen Quatsch a la Browngas etc.

Problematisch bei diesem Konzept sehe ich allerdings die notwendige Speicherung des erzeugten Wasserstoffes. Soweit ich das überblicke, handelt es sich ja dann eher um Knallgas (H2/O2) und das ist in größeren Mengen ziemlich gefährlich.
HappyMike34 ist offline   Mit Zitat antworten
Ungelesen 10.08.11, 18:00   #3
phil8143
Hawara
 
Benutzerbild von phil8143
 
Registriert seit: Sep 2009
Ort: Austria
Beiträge: 300
Bedankt: 257
phil8143 gewöhnt sich langsam dran | 82 Respekt Punkte
Standard

Ja das mit dem Knallgas dachte ich mir auch. Leider wird im Artikel nicht genau auf den Prozess eingegangen, aber die Formulierungen lassen vermuten, dass auf die eine oder andere Weise H2 das Endprodukt ist. Über den Rest kann man mit den Infos nur spekulieren. Entweder die Zerlegung in O2 und H2 läuft getrennt ab oder das 02 wird gebunden (möglicherweise zu CO2), ähnlich wie bei der Elektrolyse von Methanol.

Es wäre interessant die Publikation dazu zu lesen, ich konnte gerade nur noch diese Zusammenfassung von der Konferenz finden:
(Im letzten Absatz werden die Vorteile betont)

Zitat:
ESFuelCell2011-54389


Technical Publication

Hybrid Solar System for Stationary Electric Power Generation

Authors

Nico Hotz, Duke University

Abstract
The main idea of this study is the combination of a solar-powered reformer generating hydrogen from an alcoholic biofuel with a low-temperature fuel cell to achieve a hybrid solar system for stationary electric power generation for single residential or non-residential buildings.


The main goal of this work is to combine both technologies (low-temperature fuel cells and solar power) to achieve synergies in terms of cost and energetic efficiency compared to systems based on a single energy source and energy conversion technology. Direct solar-to-electric energy conversion, such as photovoltaics, is currently not economically competitive with traditional electric power generation. Fuel cell technology using alcoholic fuel possibly generated from biomass (e.g. methanol) is not competitive in terms of costs either. The system proposed for this project consists of relatively cheap, commercially available hardware components (intermediate-temperature solar collector, pressurized gas tank, hydrogen-fed Proton Exchange Membrane (PEM) fuel cell) and benefits in terms of energetic efficiency from the cost-free supply of solar heat. The storage of liquid methanol as primary fuel in simple and safe tank requires much less space than a gas tank, e.g. for compressed hydrogen.


Additionally, the hybrid system with hydrogen as intermediate product benefits from the efficient short-term storage of a limited amount of hydrogen in a pressurized tank. This allows for the temporary storage of energy in the system avoiding the need for expensive and inefficient electric energy storage, e.g. using batteries. For electric power costumers and electric grid companies this leads to the significant advantage of a more controllable and highly flexible demand response since the stored hydrogen can be almost instantaneously converted to electric power by the fuel cell. This system configuration solves the problem of unbalanced power supply by sunlight during day and night, an intrinsic disadvantage of solar power. The proposed system can be operated without relying on power supply from the electric grid during peak hours in the early evening, as it is typical for residential buildings, when the power demand is high, but incoming solar power is already low.



Session: 1-10-4 Solar-driven reforming processes
Ich finde, dieser Prototyp geht schon eher in die richtige Richtung was die Verwertung der Sonnenenergie angeht. Bis jetzt haben Solarzellen ja nur Spott und Hohn geerntet, obwohl die Grundidee ja genial ist. Die Prozesse müssen nurnoch soweit optimiert werden, damit sich der Umstieg und der Massenvertrieb einer solchen Technologie sowohl für die gierigen Konzerne als auch für die Umwelt lohnt.
phil8143 ist offline   Mit Zitat antworten
Antwort


Forumregeln
Du kannst keine neue Themen eröffnen
Du kannst keine Antworten verfassen
Du kannst keine Anhänge posten
Du kannst nicht deine Beiträge editieren

BB code is An
Smileys sind An.
[IMG] Code ist An.
HTML-Code ist Aus.

Gehe zu


Alle Zeitangaben in WEZ +1. Es ist jetzt 23:27 Uhr.


Sitemap

().